Home
Class 9
MATHS
The denominator of ( a + sqrt( a^(2) -b^...

The denominator of `( a + sqrt( a^(2) -b^(2) ) )/( a- sqrt(a^(2) -b^(2) ) ) + ( a - sqrt( a^(2) - b^(2) ) )/( a + sqrt(a^(2)- b^(2) ) )` is ________.

A

`a^2`

B

`b^2`

C

`a^2 -b^2`

D

`(4a^2 - 2b^2)/( b)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the denominator of the expression \[ \frac{a + \sqrt{a^2 - b^2}}{a - \sqrt{a^2 - b^2}} + \frac{a - \sqrt{a^2 - b^2}}{a + \sqrt{a^2 - b^2}}, \] we will follow these steps: ### Step 1: Identify the Denominators The denominators of the two fractions are: 1. \( a - \sqrt{a^2 - b^2} \) 2. \( a + \sqrt{a^2 - b^2} \) ### Step 2: Find the Least Common Multiple (LCM) To combine the two fractions, we need to find the LCM of the denominators. The LCM of \( a - \sqrt{a^2 - b^2} \) and \( a + \sqrt{a^2 - b^2} \) is simply their product: \[ \text{LCM} = (a - \sqrt{a^2 - b^2})(a + \sqrt{a^2 - b^2}). \] ### Step 3: Apply the Difference of Squares Using the difference of squares formula, we can simplify the product: \[ (a - \sqrt{a^2 - b^2})(a + \sqrt{a^2 - b^2}) = a^2 - (\sqrt{a^2 - b^2})^2 = a^2 - (a^2 - b^2) = b^2. \] ### Conclusion Thus, the denominator of the given expression is: \[ b^2. \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2018 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|10 Videos
  • IMO QUESTION PAPER 2018 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section |5 Videos

Similar Questions

Explore conceptually related problems

The value of (a+sqrt((a)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)) is

(sqrt(a^(2)-b^(2))+a)/(sqrt(a^(2)+b^(2))+b)-:(sqrt(a^(2)+b^(2))-b)/(a-sqrt(a^(2)-b^(2)))

Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))

(b^2)/(sqrt(a^2+b^2)+a)

(a + sqrt b)(a-sqrt b) = a^2 - b

Evaluate: int(sqrt((a^(2)+b^(2))/(2)))/(sqrt((3a^(2)+b^(2))/(2)))(x*dx)/(sqrt((x^(2)-a^(2))(b^(2)-x^(2))))

If a=2-sqrt(5) and b=(2+sqrt(5))/(2-sqrt(5)) find a^(2)-b^(2)

What is the value of x, if (b+ sqrt(b^(2) - 2bx))/(b-sqrt(b^(2) - 2bx))=a?