Home
Class 12
MATHS
If bar(a),bar(b) and bar(c) are 3 unit v...

If `bar(a),bar(b) and bar(c)` are 3 unit vectors then the maximum value of `|bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)`
(A) 3 (B) 27 (c) 9 (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 then |2bar(a)+5bar(b)+5bar(c)|=

If bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 , then |2bar(a)+5bar(b)+5bar(c)| =

Suppose bar(a), bar(b), bar(c) be three unit vectors such that |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2) is equal to 3 . If bar(a), bar(b), bar(c) are equally inclined to each other at an angle:

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

If bar(a),bar(b)andbar(c) are any three vectors, prove that (1) [bar(a)+bar(b) bar(b)+bar(c) bar(c)+bar(a)]=2[bar(a)bar(b)bar(c)] (2) [bar(a) bar(b)+bar(c) bar(a)+bar(b)+bar(c)]=0

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If bar(a),bar(b),bar(c) are coplanar then the value of |[bar(a),bar(b),bar(c)],[bar(a)*bar(a),bar(a)*bar(b),bar(a)*bar(c)],[bar(b).bar(a),bar(b)*bar(b),bar(b)*bar(c)]|=