Home
Class 12
MATHS
Prove that int(-a)^(+a)(xe^(x^2))/(1+x^2...

Prove that `int_(-a)^(+a)(xe^(x^2))/(1+x^2)dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(-a)^(a) log ((2-x)/(2+x)) dx=0

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

Evaluate: int_(0)^(1)(xe^(x))/(1+x)^(2) dx

Prove that: int_(-a)^(a) x^(3) sqrt(a^(2) -x^(2) ) dx=0

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

Evaluate the following integrals: int_(-a)^a(xe^x^2)/(1+x^2)dx

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)

int_(0)^(3)(x^(2)+1)dx