Home
Class 12
MATHS
x(dy)/(dx)+y=y^(2)log y...

`x(dy)/(dx)+y=y^(2)log y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

Solve the differential equation x(dy)/(dx)=y(log y - log x +1) .

The degree of the differential equation (d^(2)y)/(dx^(2))+3((dy)/(dx))^(2)=x^(2)log((d^(2)y)/(dx^(2))), is

The degree of the differential equation (d^(2)y)/(dx^(2))+3((dy)/(dx))^(2)=x^(2)log((d^(2)y)/(dx^(2))), is

Solve y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

The general solution of the equation, x((dy)/(dx)) = y ln (y/x) is

Solve (dy)/(dx)+(y)/(x)=log x.

The solution of the differential equation x(dy)/(dx)=y ln ((y^(2))/(x^(2))) is (where, c is an arbitrary constant)