Home
Class 10
MATHS
Cos^4A + Sin^4A = 1-Sin^2A*Cos^2A...

`Cos^4A + Sin^4A = 1-Sin^2A*Cos^2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : Cos^4A - Sin^4A = Cos^2A - Sin^2A = 2 Cos^2A - 1

Prove that cos^4A+sin^4A+2sin^2Acos^2A=1

sin^4A-cos^4A=2sin^2A-1=1-2cos^2A=sin^2A-cos^2A

Prove the following identities: sin^(4)A+cos^(4)A=1-2sin^(2)A cos^(2)A

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 , then prove that (i) sin^4A+sin^4B=2 sin^2Asin^2B (ii) (cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

If sin A + sin^2 A = 1 , then the value of cos^2A + cos^4 A is यदि sin A + sin^2 A = 1 , तो cos^2A + cos^4 A का मान है-

What is ( cos ^(4) A - sin ^(4) A)/( cos ^(2) A - sin ^(2) A) equal to ?

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove the following cos^(4)A-sin^(4)A+1=2cos^(2)A