Home
Class 12
MATHS
lim(n->oo)(1+1/n)^n is equal to:...

`lim_(n->oo)(1+1/n)^n` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

lim_(n rarr oo)3^(1/n) equals

(lim)_(n->oo)(n !)/((n+1)!+n !) is equal to a. 1 b . 0 c. 2 d. 1/2

f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) pi)/n, ( n>1, n in N) then lim_(n rarr oo) f(n)/n^2 is equal to (A) 1/2 (B) 1/3 (C) 2/3 (D) 1

lim_(n rarr oo)2^(1/n)

lim_(x->oo)(1-x+x.e^(1/n))^n

lim_(n->oo)[log_(n-1)(n)log_n(n+1)*log_(n+1)(n+2).....log_(n^k-1) (n^k)] is equal to :

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to