Home
Class 10
MATHS
The discriminant of bx^2+ax-c=0 (A) a^...

The discriminant of `bx^2+ax-c=0`
`(A) a^2+4bc`
`(B) a^2=4bc`
`(C) a^2-4bc`
`(D)` none of these.

Promotional Banner

Similar Questions

Explore conceptually related problems

35. If the sum of the roots of ax^2 + bx +c = 0 be equal to sum of the squares, then- (A) 2ac = ab + b2 (B) 2ab-bc + c2 c (D) None of these (D) None of these (C) 2bc -ac+2

If alpha,beta are the roots of the equation (ax^(2)+bx+c=0,then(1)/(a alpha+b)+(1)/(a beta+b)=c/ab (b) a/bc(c)b/ac(d) none of these)

If [(a,b),(c,-a)] is a square root of the 2xx2 identity matrix then a,b,c satisfy the relation (A) 1-a^2-bc=0 (B) 1-a^2+bc=0 (C) 1+a^2-bc=0 (D) 1+a^2+bc=0

If a,b,c are in proportion,then a^(2)=bc(b)b^(2)=ac(c)c^(2)=ab(d) None of these

If the equation ax^(2)+2bx-3c=0 has no real roots and ((3c)/(4)) 0c=0 (d) None of these

The factors of a ^(2) -b ^(2) - 4c ^(2) + 4d ^(2) - 4 (ad - bc) are :

a^(2)-b^(2)-4bc+4c^(2)

If A=[(-a^2, ab, ac),(ab,-b^2,bc),(ac,bc,-c^2)] then det A is equal to (A) 4abc (B) 4a^2b^2c^2 (C) -4abc (D) -4a^2b^2c^2

The ratio of the roots of the equation ax^(2)+bx+c=0 is same equation Ax^(2)+Bx+C=0. If D_(1) and D_(2) are the discriminants of 0. If D_(1) and D_(2) are the ax^(2)+bx+C=0 and Ax^(2)+Bx+C=0 respectively,then D_(1):D_(2)