Home
Class 11
MATHS
The value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)...

The value of `1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt3+sqrt4)+.......+1/(sqrt100+sqrt99)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is

The value of (1-sqrt2) + (sqrt2-sqrt3)+(sqrt3-sqrt4)+ ............ + (sqrt15-sqrt16) is

1/(1+ sqrt2 + sqrt3)

The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3)) +.....1/(sqrt(100) + sqrt(99)) is equal to:

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

1/(1-sqrt(2))+ 1/(sqrt(2)-sqrt(3))+1/(sqrt(3)-sqrt(4))+..........+1/(sqrt(8)-sqrt(9))

The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+........+(1)/(sqrt(8) + sqrt(9)) is