Home
Class 12
MATHS
d/(dx)(sqrt(tanx))=...

`d/(dx)(sqrt(tanx))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Comprehension 2 (Q.No 4 to 6) It is known that sqrt(tanx)+sqrt(cotx)={{:(sqrt(sinx)/sqrt(cosx)+sqrt(cosx)/sqrt(sinx), if 0ltxltpi/2),(sqrt(-sinx)/sqrt(cosx)+sqrt(-cosx)/sqrt(-sinx),if pi lt x lt (3pi)/(2)):} d/(dx)(sqrt(tanx)-sqrt(cotx)) =1/2(sqrt(tanx)+sqrt(cotx))(tanx+cotx), AA in (0,pi,2) uu (pi,(3pi)/2) and d/(dx)(sqrt(tanx)+sqrt(cotx))=1/2(sqrt(tanx)-sqrt(cotx))(tanx+cotx), AA x in (0,pi/2) uu (pi, (3pi)/(2)) . Value of the integral I=int(sqrt(tanx)+sqrt(cotx)) dx, where x in (0,pi/2) , is

Differentiate wrt x : (sqrt(x)+(1)/(x))(x-(1)/sqrt( x))

The differentiation of t a nx with respect to xi ssec^2xdot i.e. d/(dx)(tanx)=sec^2x

Prove that d/(dx){x/2sqrt(a^2-x^2)+(a^2)/2sin^(-1)(x/a)}=sqrt(a^2-x^2)

Prove that d/(dx){x/2sqrt(a^2-x^2)+(a^2)/2sin^(-1)(x/a)}=sqrt(a^2-x^2)

Differentiate the following functions with respect to (x^2+2)/(sqrt(cosx))

Differentiate the following functions with respect to (x^2+2)/(sqrt(cosx))

Differentiate e^(sqrt(tanx)) from the first principle.

Differentiate sqrt(x) +1/ (sqrt(x) )

Differentiate the following function with respect of x \ :(sqrt(a)+sqrt(x))/(sqrt(a)-sqrt(x))