Home
Class 11
MATHS
Find 'y' if (logx x)*(log3 2x)*(log(2x) ...

Find 'y' if `(log_x x)*(log_3 2x)*(log_(2x) y) = log_x x^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

1+log_(x)y=log_(2)y

If (log_(x)x)(log_(3)2x)(log_(2x)y)=log_(x^(x^(2)) , then what is the value of y ?

If (log_(3)x)(log_(x)2x)(log_(2x)y)=log_(x)x^(2) , then what is y equal to?

If log_(3) x log_(y) 3 log_(2) y = 5 , then x =

y=log_(2)[log_(3)(log_(5)x)] ,then x=

If (log_(5)x)(log_(x)3x)(log_(3x)y)=log_(x)x^(3) then y equals

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

Assuming that all logarithmic terms are define which of the following statement(s) is/are incorrect? (A)log_b(ysqrtx)=log_b y.(1/2log_b x) , (B) log_b x-log_b y=(log_b x)/(log_b y) , (C)2(log_b x+log_b y)=log_b (x^2y^2) , (D) 4log_b x-log_b y=log(x^4/y^-3)

The solution set of the system of equations log_(12)x((1)/(log_(x)2)+log_(2)y)=log_(2)x and log_(2)x*(log_(3)(x+y))=3log_(3)x is :(i)x=6,y=2(ii)x=4,y=3(iii)x=3,y=4(ii)x=2,y=6