Home
Class 11
MATHS
Solve: (sintheta+costheta)/(costheta-sin...

Solve: `(sintheta+costheta)/(costheta-sintheta)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that- (sintheta+1-costheta)/(costheta-1+sintheta)=(1+sintheta)/costheta

If (sintheta+costheta)/(sintheta-costheta)=3 and theta is an acute angle, then the value of (3sintheta+4costheta)/(8costheta-3sintheta) is

If (2sintheta-costheta)/(costheta+sintheta)=1 , then value of cottheta is :

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

Evaluate Delta=|{:(sintheta, costheta),(-costheta,sintheta):}|

Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta.[{:(sintheta,-costheta),(costheta,sintheta):}]=I.

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

Consider a matrix A (theta)= [(sintheta,costheta),(-costheta,sintheta)] then

If tantheta=4/3 then find the value of (sintheta+costheta)/(sintheta-costheta)