Home
Class 12
MATHS
tan^(-1)(3x+1)+tan^(-1)(1/4)=pi/4...

`tan^(-1)(3x+1)+tan^(-1)(1/4)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Solve for x : tan^(-1)(x/2)+tan^(-1)(x/3)=pi/4 , 0

Q.solve for x ,tan ^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)

If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4) , then find the value of x.

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Solve tan^(-1)2x + tan^(-1)3x = pi/4