Home
Class 12
MATHS
tan^(-1)(3/5)-tan^(-1)(x+2)=pi/2...

`tan^(-1)(3/5)-tan^(-1)(x+2)=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2 , then: x=……

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to pi (b) 2pi (c) pi/2 (d) none of these

Prove that- tan^-1(1/2)+tan^-1(1/5)+tan^-1(1/8)=pi/4