Home
Class 12
MATHS
tan^(-1)(x/4)+tan^(-1)(2/(x+5))=pi/4...

`tan^(-1)(x/4)+tan^(-1)(2/(x+5))=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

Solve for x : tan^(-1)(x/2)+tan^(-1)(x/3)=pi/4 , 0

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0

Q.solve for x ,tan ^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)

tan^(-1)(x+2)+tan^(-1)(x-2)=(pi)/(4);x>0

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4) , then find the value of x.

tan^(-1)2x+tan^(-1)3x=(pi)/(4)