Home
Class 10
MATHS
if f(x)=(x+1)^x+(x)^(x+1) find the value...

if `f(x)=(x+1)^x+(x)^(x+1)` find the value of f(1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^3-frac{1}{x^(3)} find the value of f(x)+f(frac{1}{x})

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

Ilf f(x)={x^3, x 2 , then find the value of f(-1)+f(1)+f(3) . Also find the value (s) of x for which f(x)=2.

If f(x)=x^(3)-(1)/(x^(3)) , then find the value of f(x)+f(-x) .

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

If f(x)=(x+1)/(x-1) then the value of f(f(f(x))) is :

If f(x) = x - (1)/(x) , then the value of f(x) + f((1)/(x)) is :

If f(x)=(x-|x|)/(|x|) , then value of f(-1) is

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)