Home
Class 12
MATHS
int1^2(e^(2x))/2dx...

`int_1^2(e^(2x))/2dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(1)e^(2x)dx

int_0^2 e^(x/2) dx

int_0^1 x^2 e^(2x) dx

Evaluate the following definite integral: int_1^2e^(2x)(1/x-1/(2x^2))dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

int(x e^(2x))/((1+2x)^2)dx

If the value of the integral int_1^2e^(x^2)dx is alpha , then the value of int_e^(e^4)sqrt(lnx)dx is:

Evaluate: int(e^(2x))/(1+e^x)dx

Evaluate: int(e^x)/(1+e^(2x))dx