Home
Class 10
MATHS
Find x (sqrt3-sqrt2)^x=(sqrt3+sqrt2)^2...

Find `x`
`(sqrt3-sqrt2)^x=(sqrt3+sqrt2)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2) then x^2 +xy +y^2 is a multiple of

Solve (sqrt3 +sqrt2)^x + (sqrt3 -sqrt2)^x= 10 .

[(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqrt3 - sqrt2)/(sqrt3 + sqrt2)] simplifies to

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

if sqrt2=1.414and sqrt3=1.732 then find the value of 4/(3sqrt3-2sqrt2)+3/(3sqrt3+2sqrt2)

Solve {sqrt(3+2 sqrt2)}^x + {sqrt(3-2 sqrt2)}^x =6 .