Home
Class 12
MATHS
lim(x->2) (x^sqrt2-2^sqrt2)/(x-2)= (1)...

`lim_(x->2) (x^sqrt2-2^sqrt2)/(x-2)=`
`(1) (sqrt2).2^sqrt2`
`(2) 2^(sqrt2-1)`
`(3) 2^(sqrt2-1/2)`
`(4) 2^sqrt2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt2-1)/(sqrt2+1)times(sqrt2-1)/(sqrt2-1)=?

lim_(x rarr2)(sqrt(x-2)+sqrt(x)-sqrt(2))/(sqrt(x^(2)-4))

Simplify (x-sqrt2)(x+sqrt2)

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

Solve (sqrt2+1)^x +(sqrt2-1)^x = 6 .

If U= [((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))] , then U^(-1) is

2+sqrt2+1/(2+sqrt2)-1/(2-sqrt2) is equal to

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)