Home
Class 10
MATHS
1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+1/(sqrt4...

`1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)` is equal to
`(A) sqrt3(sqrt2-1)`
`(B) sqrt2(sqrt3-1)`
`(C) sqrt3-1`
`(D) sqrt2-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

1/(sqrt5 +sqrt3 +2) + 1/(-sqrt5 +sqrt3 +2 ) =

1/(sqrt(2)+sqrt(3)+sqrt(5))+1/(sqrt(2)+sqrt(3)-sqrt(5))

Solve (1/(sqrt3+sqrt2))+(1/(sqrt3-sqrt2))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :