Home
Class 11
MATHS
If f(x)=|x|/x ; x ne 0; then f(x)-f(-x) ...

If `f(x)=|x|/x` ; `x ne 0`; then `f(x)-f(-x)` is equal to
a. `-1`
b. `0`
c. `2`
d. `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+f(-x)+2=

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

If f (x) =x ^(2) + 1/x, x ne 0 then f ((1)/(x)) =

If f(x)={xsin1/x , x!=0 0, x=0 , then (lim)_(x->0)f(x) equals a. 1 b . 0 c. -1 d. none of these

if f(x)=3|x|+|x-2| then f'(1) is equal to a)2 b)1 c)3 d)0

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+(1)/(f(x+1))=

If : f(x+1/x)=x^3+1/x^3, where x ne0 then: f(x)=...

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3