Home
Class 11
MATHS
If A=A^(-1) then A^2 is equal to (a) [...

If `A=A^(-1)` then `A^2` is equal to
(a) `[(0,1,0),(1,1,1),(0,1,0)]` (b) `[(0,1,0),(0,0,0),(1,0,1)]` (c) `[(1,0,0),(0,1,0),(0,0,1)]` (d) `[(1,1,1),(1,1,1),(1,1,1)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [(0,1,1),(0,0,1),(0,0,0)] is a matrix of order 3 then the value of the matrix (I+A)-2A^2(I-A), where I is a unity matrix is equal to (A) [(1,0,0),(1,1,0),(1,1,1)] (B) [(1,-1,-1),(0,1,-1),(0,0,1)] (C) [(1,1,-1),(0,1,1),(0,0,1)] (D) [(0,0,2),(0,0,0),(0,0,0)]

If A=[(0,1),(1,0)] then A^4 is (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

If A=[(alpha, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)]

The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is (A) [(0,0,1),(0,1,0),(1,0,0)] (B) [(0,0,-1),(0,-1,0),(-1,0,0)] (C) [(1,0,0),(0,1,0),(0,0,1)] (D) [(1/2,0,0),(0,1/2,0),(0,0,1/2)]

If A=[(1,0),(0,1)] then A^4= (A) [(1,0),(0,1)] (B) [(1,1),(0,10)] (C) [(0,0),(1,1)] (D) [(0,1),(1,0)]

The inverse of [(1,a,b),(0,x,0),(0,0,1)] is [(1,-a,-b),(0,1,0),(0,0,1)] |then x =

The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-a,1,0),(b,c,1)] (B) [(1,0,0),(-a,1,0),(ac,b,1)] (C) [(1,-a,ac-b),(-0,1,-c),(0,0,1)] (D) [(1,0,0),(-a,1,0),(ac-b,-c,1)]

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then