Home
Class 12
MATHS
int{(1)/(log x)-(1)/((log x)^(2))}dx...

`int{(1)/(log x)-(1)/((log x)^(2))}dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

int_(1)^(2) (dx)/(x(1+log x)^(2))

Evaluate : int [ log (log x) +(1)/((log x)^(2)) ] dx

int(1)/(x(3+log x))dx

int((1+Sin(log x))/(1+Cos(log x))])dx=

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

int((1+(log)_e x)^2)/(1+(log)_e x^(x+1)+((log)_e x^(sqrt(x)))^2)dx=

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=