Home
Class 11
MATHS
If z in C and |(z-9)/(z-1)|=3 then |z| i...

If `z in C` and `|(z-9)/(z-1)|=3` then `|z|` is equal to
A) `3`
B) `4`
C) `6`
D) `5`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ( x - 1 )^3 + ( y - 2 )^3 + ( z - 3 )^3 = 3 ( x - 1 ) ( y - 2 ) ( z - 3 ) and x - 1 != y -2 != z-3 , then x + y + z is equal to : ( A ) 2 ( B ) -6 ( C ) 6 ( D ) 4

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to (A) 3 (B) 36 (C) 216 (D) 1296

If |z|-z=3-2i, then z equals (A) 7/6+i, (B) -7/6+2i, (C) -5/6+2i, (D) 5/6+i

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-3| = "min" {|z-1|,|z-5|} , then Re(z) equals to

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If z_(k)=cos((k pi)/(10))+i sin((k pi)/(10)), then z_(1)z_(2)z_(3)z_(4) is equal to (A)-1 (B) 2(C)-2 (D) 1

If |z|+z=3+i , then value of |z| is (A) 5//3 (B) 3//5 (C) 4//3 (D) 3//4

If z_1,z_2 and z_3 are complex numbers such that |z_1|=|z_2|=|z_3|= |1/z_1+1/z_2+1/z_3|=1, then |z_1+z_2+z_3| is (A) equal to 1 (B) gt1 (C) gt3 (D) equal to 3

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals to : a) 3sqrt(3) b) sqrt(3) c) 3 d) 1/(3sqrt(3))