Home
Class 10
MATHS
Simplify 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(...

Simplify `1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is

Simplify (1)/(sqrt(7)+sqrt(3)-sqrt(2))

The value of the expression sqrt ((1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+.........99 terms is equal to

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

5.Simplify: (1/sqrt 2)/((2/sqrt3)+2)

Simplify (sqrt(2)-1+sqrt(6))/sqrt(5)

Simplify: (sqrt5-sqrt2)(sqrt2-sqrt3)

Simplify (2+sqrt3)/(sqrt5+sqrt2)