Home
Class 10
MATHS
Simplify 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)...

Simplify `1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify (sqrt5 - sqrt3)(sqrt5 + sqrt 3)

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

Simplify ((sqrt3+sqrt5)(sqrt5+sqrt2))/(sqrt2+sqrt3+sqrt5)

Simplify (3sqrt5-5sqrt2)(4sqrt5+3sqrt2)

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9)) = 2

Simplify (sqrt3+sqrt5)(sqrt3-sqrt5)

Simplify (sqrt3-sqrt5)(sqrt5+sqrt3)