Home
Class 10
MATHS
Simplify 1/(sqrt3+sqrt4)+1/(sqrt5+sqrt7)...

Simplify `1/(sqrt3+sqrt4)+1/(sqrt5+sqrt7)+1/(sqrt7+sqrt9)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

The simplest value of (1/(sqrt9-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5))

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

What value will be obtained on simplifying (1)/(sqrt6+sqrt5)+(1)/(sqrt9+sqrt8)+(1)/(sqrt7+sqrt6)+(1)/(sqrt8+sqrt7)+sqrt5?

The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/(sqrt6-sqrt5)]+[1/(sqrt5-sqrt4)] is A)6 B)5 C)-7 D)-6

Simplify (1/2+1/sqrt2-sqrt3)/(sqrt3-1/sqrt2-1/sqrt3)

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Simplify (sqrt(7)+sqrt(2))(sqrt(7)-sqrt(2))