Home
Class 12
MATHS
int(0)^( pi/4)tan^(2)x*dx=?...

`int_(0)^( pi/4)tan^(2)x*dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

The value of I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx is equal to

int_(0)^((pi)/(3))[tan^(2)x]dx

int_(0)^(pi//4) tan x dx

The value of integral I = int_(0)^(pi//4) (tan^(2)x + 2sin^(2)x) dx is:

Evaluate: int_(-pi/4)^( pi/4)(tan^(2)x)/(1+e^(x))dx

" (x) "int_(0)^( pi/4)tan xdx

Evaluate each of the following integral: int_0^(pi//4)tan^2x\ dx

Prove: int_(0)^( pi/2)log|tan x|dx=0