Home
Class 11
MATHS
If |z-2|=|z+2(1-i)|, then z is equal to...

If `|z-2|=|z+2(1-i)|`, then `z` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=sqrt(2i), then z is equal to

Let z=((1+i)^(2))/(a-i),(a>0) and |z|=sqrt((2)/(5)) then z is equal to

If |z| = z + 3 - 2i , then z equals

If a complex number z satisfies z + sqrt(2) |z + 1| + i=0 , then |z| is equal to :

if z = ((1+i)/(1-i)) then z^(2) equals

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals to : a) 3sqrt(3) b) sqrt(3) c) 3 d) 1/(3sqrt(3))

z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 , then |z| is equal to