Home
Class 11
MATHS
(a+bomega+comega^2)/(b+comega+aomega^2) ...

`(a+bomega+comega^2)/(b+comega+aomega^2) + (a+bomega+comega^2)/(c+aomega+bomega^2)` will be

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is a.-omega b. omega^2 c. 1 d. -1

If omega is a cube root of unity, then find the value of the following: (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+comega+aomega^2)

If |(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4x+1, x-2, x+2)|= px^4 +qx^3+rx^2+sx+t be n identity in x and omega be an imaginary cube root of unity, (a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)= (A) p (B) 2p (C) -2p (D) -p

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If a ,b , c are nonzero real numbers such that |b cc a a b c a a bb c a bb cc a|=0,t h e n 1/a+1/(bomega)+1/(comega^2)=0 b. 1/a+1/(bomega^2)+1/(comega^)=0 c. 1/(aomega)+1/(bomega^2)+1/c=0 d. none of these

If omega is a cube root of unity, prove that (a+bomega+comega^2)/(c+aomega+bomega^2)=omega^2

Prove that a^3 + b^3 + c^3 – 3abc = (a + b + c) (a + bomega + comega^2) (a + bomega^2 + "c"omega) , where omega is an imaginary cube root of unity.