Home
Class 11
MATHS
|(1,1,omega^2),(1,1,omega),(omega^2,omeg...

`|(1,1,omega^2),(1,1,omega),(omega^2,omega,1)| `

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

{[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)] + [(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1)]} [(1),(omega),(omega^(2))]

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a