Home
Class 11
MATHS
If (5+8i)(3+7i)=a+ib, then a+b=?...

If `(5+8i)(3+7i)=a+ib`, then `a+b=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = (3+ 7i) (a +ib) where a, b in in Z- {0} , is purely imaginary , then the minimum value of |z| is

If multiplicative inverse of (1 + i) is a + ib then (a + b) equals to

IF (sqrt(3)+i)^(10)=a+ib, then a and b are respectively

If a+ib=sqrt(3+4i), then a and b=?

If (a-ib)/(a+ib)= (1+i)/(1-i) , then show that a+b=0

If (a-ib)(3+5i) is the conjugate of -6-24i then the values of (a, b) is

If z=(3+7i)(a+ib) , where a , b in Z-{0} , is purely imaginery, then minimum value of |z|^(2) is

" If "(i^(4)+i^(9)+i^(16))/(2-i^(8)+i^(10)+i^(3))=a+ib," then find the value of "a" and "b