Home
Class 12
MATHS
If y=1+x+x^2/(2!)+x^3/(3!)+ . . . + x^n/...

If `y=1+x+x^2/(2!)+x^3/(3!)+ . . . + x^n/(n!)`, then `dy/dx = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^n+y^n=a^n , then dy/dx=

y=(x+3)^(1/2) then dy/dx=?

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n))) then (dy)/(dx) at x=0 is

If x ^(n) y^(n) =( x+y ) ^(n),then (dy)/(dx)=

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2n)) then find (dy)/(dx) at x=0

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)++(x^(n))/(n!), show that (dy)/(dx)-y+(x^(n))/(n!)=0

If x^(n) y^(n) =(x+y) ^(n),then (dy)/(dx)=

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, show that (dy)/(dx)=y