Home
Class 8
MATHS
The value of (1^2+1^3+1^4+1^5+1^6)is:...

The value of `(1^2+1^3+1^4+1^5+1^6)`is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (2^-1+3^-1)^-1-:5^-1

Find the value of. (i) (3^@+4^(-1)) xx 2^2 (ii) (2^(-1)xx 4^(-1))-: 2^(-1) (iii) (1/2)^-2 + (1/3)^-2 + (1/4)^-2 (iv) (3^-1 + 4^-1+ 5^(-1))^0 (v) {((-2)/3)^-2}^2

Let +_6 (addition modulo 6) be a binary operation on S={0,\ 1,\ 2,\ 3,\ 4,\ 5} . Write the value of 2+_6 4^(-1)+_6 3^(-1) .

Let +_6 (addition modulo 6) be a binary operation on S={0,\ 1,\ 2,\ 3,\ 4,\ 5} . Write the value of 2+_6 4^(-1)+_6 3^(-1) .

If 1/1^2+1/2^2+1/3^2+...oo=pi^2/6 then value of 1-1/2^2+1/3^2-1/4^2+...oo=

The value of cot(cose c^(-1)(5/3)+ tan^(-1)(2/3)) is: (1) 6/(17) (2) 3/(17) (2) 4/(17) (4) 5/(17)

The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) is equal to

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

If the rank of the matrix [[-1,2,5],[2,-4,a-4],[1,-2,a+1]] is 1 then the value of a is (A) -1 (B) 2 (C) -6 (D) 4

Find the value of the determinant |[1, 1, 1, 1],[ 1, 2, 3, 4],[ 1, 3, 6, 10 ],[1 ,4 ,10 ,20]|