Home
Class 14
MATHS
If 3^(x+3) xx9^(2x-5) = 3^(3x+7 )then th...

If `3^(x+3) xx9^(2x-5) = 3^(3x+7 )`then the value of x is :

A

5

B

6

C

7

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^{(x+3)} \times 9^{(2x-5)} = 3^{(3x+7)} \), we can follow these steps: ### Step 1: Rewrite \( 9 \) in terms of base \( 3 \) Since \( 9 = 3^2 \), we can rewrite \( 9^{(2x-5)} \) as: \[ 9^{(2x-5)} = (3^2)^{(2x-5)} = 3^{2(2x-5)} = 3^{(4x-10)} \] ### Step 2: Substitute back into the equation Now, we can substitute this back into the original equation: \[ 3^{(x+3)} \times 3^{(4x-10)} = 3^{(3x+7)} \] ### Step 3: Combine the exponents on the left side Using the property of exponents \( a^m \times a^n = a^{m+n} \), we can combine the left side: \[ 3^{(x+3) + (4x-10)} = 3^{(3x+7)} \] This simplifies to: \[ 3^{(5x - 7)} = 3^{(3x + 7)} \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: \[ 5x - 7 = 3x + 7 \] ### Step 5: Solve for \( x \) Now, we solve for \( x \): 1. Subtract \( 3x \) from both sides: \[ 5x - 3x - 7 = 7 \] This simplifies to: \[ 2x - 7 = 7 \] 2. Add \( 7 \) to both sides: \[ 2x = 14 \] 3. Divide by \( 2 \): \[ x = 7 \] ### Final Answer Thus, the value of \( x \) is \( 7 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(x + 3) . 4^(2x - 5) = 2^(3x + 7) , then the value of x is :

If 2^(x+3) cdot 2^((2)(2x - 5)) = 2^(3x + 7) , then the value of x is :

Given that (5x - 3)^3 + (2x + 5)^3 + 27(4- 3x)^3 = 9(3 - 5x)(2x + 5)(3x - 4) , then the value of (2x + 1) is:

Given that (5x-3)^3+(2x+5)^3+27 (4-3x)^3 =9(3-5x)(2x+5)(3x-4) ,then the value of (2x+1) is : दिया गया है कि (5x-3)^3+(2x+5)^3+27 (4-3x)^3 =9(3-5x) (2x+5)(3x-4) है, तो (2x+1) का मान ज्ञात करें |

If (5x)/3 - 7/2 ((2x)/5 - 1/3) = 1/3 , then the value of x is ________

If 2^(x).9^(2x+3) = 7^(x+5) , then x =

If 3 (5x-7) -4 (8x-13) =2 (9x-11)-17 , then the value of (7x-5)/(11x-9) is

If (x-3)^3+(2x-5)^3+(x-4)^3=(3x -9) (2x -5) (x -4) , then what is the value of x? यदि (x-3)^3+(2x-5)^3+(x-4)^3=(3x -9) (2x -5) (x -4) है, तो x का मान क्या है ?