Home
Class 14
MATHS
If 0 le theta le (pi)/(2) and sec^(2) t...

If ` 0 le theta le (pi)/(2)` and `sec^(2) theta + tan^(2) theta = 7` , then `theta` is

A

`(15pi)/(12)` radian

B

`(pi)/(3)` radian

C

`(pi)/(5)` radian

D

`(pi)/(6)` radian

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec^2 \theta + \tan^2 \theta = 7 \) given that \( 0 \leq \theta \leq \frac{\pi}{2} \), we can follow these steps: ### Step 1: Recall the identity We know from trigonometric identities that: \[ \sec^2 \theta - \tan^2 \theta = 1 \] Let’s denote this as Equation (1). ### Step 2: Set up the equations We have two equations now: 1. \( \sec^2 \theta + \tan^2 \theta = 7 \) (Equation 2) 2. \( \sec^2 \theta - \tan^2 \theta = 1 \) (Equation 1) ### Step 3: Add the two equations Adding Equation (1) and Equation (2): \[ (\sec^2 \theta + \tan^2 \theta) + (\sec^2 \theta - \tan^2 \theta) = 7 + 1 \] This simplifies to: \[ 2\sec^2 \theta = 8 \] ### Step 4: Solve for \( \sec^2 \theta \) Dividing both sides by 2: \[ \sec^2 \theta = 4 \] ### Step 5: Find \( \sec \theta \) Taking the square root: \[ \sec \theta = 2 \] ### Step 6: Find \( \theta \) Since \( \sec \theta = \frac{1}{\cos \theta} \), we have: \[ \cos \theta = \frac{1}{2} \] The angle \( \theta \) that satisfies \( \cos \theta = \frac{1}{2} \) in the range \( 0 \leq \theta \leq \frac{\pi}{2} \) is: \[ \theta = \frac{\pi}{3} \] ### Conclusion Thus, the value of \( \theta \) is: \[ \theta = \frac{\pi}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec^(2)theta+tan^(2)theta=7 , then the value of theta

If 0 le theta lt pi/2 and costheta + sqrt(3) sin theta =2 , then what is the value of theta ?

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =

If sec theta+tan theta=2 , then sec theta-tan theta = ?