Home
Class 14
MATHS
The simplest value of sin^(2)x+2tan^(...

The simplest value of `sin^(2)x+2tan^(2)x-2sec^(2)x+cos^(2)x` is

A

1

B

0

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int e^(tan x)(x sec^(2)x+sin2x)dx is equal to

The value of int e^(tan x)(x sec^(2)x+sin2x)dx is equal to

cot x cos^(2)x-tan x sin^(2)x=2cot2x

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

If a^(2)sec^(2)x+b^(2)tan^(2)x=c^(2) then the value of sec^(2)x+tan^(2)x is equal to (assume b^(2)!=a^(2) )

The value of lim_(xrarrpi//2)12 tan^(2)x[sqrt(6+3 sin x-2cos^(2)x)-sqrt(3+6 sin x-cos^(2)x)] is _____________

int(sin2x+2tan x)/((cos^(6)x+6cos^(2)x+4))

The value of (2(sin2x+2cos^(2)x-1))/(cos x sin x cos3x+sin3x) is

If a^(2)sec^(2)x-b^(2)tan^(2)x=c^(2) then the value of (sec^(2)x+tan^(2)x) is equal to (assume b^(2)nea^(2))