Home
Class 14
MATHS
If x=asinthetaa n dy=btantheta, then pro...

If `x=asinthetaa n dy=btantheta,` then prove that `(a^2)/(x^2)-(b^2)/(y^2)=1`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a sin theta and y=b tan theta, then prove that (a^(2))/(x^(2))-(b^(2))/(y^(2))=1

If x=asinthetaandy=btantheta , then the value of (a^(2))/(x^(2))-(b^(2))/(y^(2))=?

x=a sin theta , y=btantheta so prove that a^2/x^2-b^2/y^2=1

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

Find the equations of the tangent and the normal to the curve (x^2)/(a^2)-(y^2)/(b^2)=1 at (asectheta,\ btantheta) at the indicated points.

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0