Home
Class 10
MATHS
f(x)=sqrt(9-x)/(sqrt(9-x)+sqrt8) prove t...

`f(x)=sqrt(9-x)/(sqrt(9-x)+sqrt8)` prove that `f(x)+f(9-x)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f: R to [0,∞) be a function such that f(x -1) + f(x + 1) = sqrt3(f(x)) then prove that f(x + 12) = f(x) .

if f(x)=sqrt(x+sqrt(x+)sqrt(x+)sqrt(…oo)),

Find the values of x for which the following functions are identical. (i) f(x)=x " and " g(x)=(1)/(1//x) (ii) f(x)=(sqrt(9-x^(2)))/(sqrt(x-2)) " and " g(x)=sqrt((9-x^(2))/(x-2))

Find the value of x for which function are identical.f(x)=(sqrt(9-x^(2)))/(sqrt(x-2)) and g(x)=sqrt((9-x^(2))/(x-2))

If f(x)=x(sqrt(x)-sqrt(x+1)) then f(x) is:

If f(x)=(sqrt(x)+(1)/(sqrt(x)))^(2)," then: "f'(2)=

f(x)=sqrt((x-2)sqrt(x-1))/(sqrt(x-1)-1). x then f'(10) & f'(3/2)=

f(x)= (1)/(sqrt(9-4x^(2)) decreases in

If f(x)=sqrt(x+2sqrt(x))," then "f'(1)=