Home
Class 7
MATHS
If a=(4lm)/(l+m), then the value of (a+2...

If `a=(4lm)/(l+m)`, then the value of `(a+2l)/(a-2l)+(a+2m)/(a-2m)=`

A

`2`

B

`4`

C

`(2lma)/((l+m))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{a + 2l}{a - 2l} + \frac{a + 2m}{a - 2m} \) given \( a = \frac{4lm}{l + m} \), we will follow these steps: ### Step 1: Substitute the value of \( a \) We start by substituting \( a \) in the expression: \[ \frac{\frac{4lm}{l + m} + 2l}{\frac{4lm}{l + m} - 2l} + \frac{\frac{4lm}{l + m} + 2m}{\frac{4lm}{l + m} - 2m} \] ### Step 2: Simplify the first fraction For the first fraction, we need a common denominator: \[ \frac{4lm + 2l(l + m)}{4lm - 2l(l + m)} = \frac{4lm + 2l^2 + 2lm}{4lm - 2l^2 - 2lm} \] This simplifies to: \[ \frac{6lm + 2l^2}{2lm - 2l^2} = \frac{2(3lm + l^2)}{2(lm - l^2)} = \frac{3lm + l^2}{lm - l^2} \] ### Step 3: Simplify the second fraction Now we simplify the second fraction in a similar manner: \[ \frac{4lm + 2m(l + m)}{4lm - 2m(l + m)} = \frac{4lm + 2m^2 + 2lm}{4lm - 2m^2 - 2lm} \] This simplifies to: \[ \frac{6lm + 2m^2}{2lm - 2m^2} = \frac{2(3lm + m^2)}{2(lm - m^2)} = \frac{3lm + m^2}{lm - m^2} \] ### Step 4: Combine the two fractions Now we combine the two simplified fractions: \[ \frac{3lm + l^2}{lm - l^2} + \frac{3lm + m^2}{lm - m^2} \] To add these, we need a common denominator: \[ \frac{(3lm + l^2)(lm - m^2) + (3lm + m^2)(lm - l^2)}{(lm - l^2)(lm - m^2)} \] ### Step 5: Expand the numerator Expanding the numerator gives: \[ (3lm^2 - 3l^2m + l^2lm - l^2m^2) + (3lm^2 - 3m^2l + m^2lm - m^2l^2) \] Combining like terms results in: \[ 6lm^2 + 6l^2m - 2l^2m^2 \] ### Step 6: Final expression Thus, the final expression simplifies to: \[ \frac{6lm^2 + 6l^2m - 2l^2m^2}{(lm - l^2)(lm - m^2)} \] This can be further simplified if needed. ### Final Answer The value of \( \frac{a + 2l}{a - 2l} + \frac{a + 2m}{a - 2m} \) is: \[ \frac{6lm + 6l^2 - 2l^2m}{(lm - l^2)(lm - m^2)} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2019-20 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS |10 Videos
  • IMO QUESTION PAPER 2019-20 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2018-19 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Logical Reasoning|20 Videos
  • IMO QUESTION PAPER 2019-20 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers section|5 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equation x^(2) - lm + m = 0 , then find the value of 1/(alpha^(2)) + 1/(beta^(2)) in terms of l and m.

If the direction cosines of two lines are (l_(1), m_(1), n_(1)) and (l_(2), m_(2), n_(2)) and the angle between them is theta then l_(1)^(2)+m_(1)^(2)+n_(1)^(2)=1=l_(2)^(2)+m_(2)^(2)+n_(2)^(2) and costheta = l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2) If the angle between the lines is 60^(@) then the value of l_(1)(l_(1)+l_(2))+m_(1)(m_(1)+m_(2))+n_(1)(n_(1)+n_(2)) is

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

Fractorise: (l+m) ^(2) -(l -m)^(2)

An orbital has l=4 , what are the possible values of m_(l) ? Hint : m_(l) = -1,"…...",0"…......," +l

If L, M and N are natural number, then value of LM=M+N= ? (A) L+N=8+M (B) M^(2)=(N^(2))/(L+1) (C) M=L+2