Home
Class 7
MATHS
If 3^(2x - 3) xx 5^(4x - 1) = 5^(2x + 1)...

If `3^(2x - 3) xx 5^(4x - 1) = 5^(2x + 1) xx 3^(4x - 5)`, then x =

A

`-1`

B

2

C

1

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3^{(2x - 3)} \times 5^{(4x - 1)} = 5^{(2x + 1)} \times 3^{(4x - 5)}\), we can follow these steps: ### Step 1: Rewrite the equation We start with the original equation: \[ 3^{(2x - 3)} \times 5^{(4x - 1)} = 5^{(2x + 1)} \times 3^{(4x - 5)} \] ### Step 2: Rearrange the equation We can rearrange the equation to group the terms with the same base: \[ \frac{3^{(2x - 3)}}{3^{(4x - 5)}} = \frac{5^{(2x + 1)}}{5^{(4x - 1)}} \] ### Step 3: Simplify the fractions Using the property of exponents \(\frac{a^m}{a^n} = a^{m-n}\), we can simplify both sides: \[ 3^{(2x - 3) - (4x - 5)} = 5^{(2x + 1) - (4x - 1)} \] ### Step 4: Simplify the exponents Now simplify the exponents: - For the left side: \[ (2x - 3) - (4x - 5) = 2x - 3 - 4x + 5 = -2x + 2 \] - For the right side: \[ (2x + 1) - (4x - 1) = 2x + 1 - 4x + 1 = -2x + 2 \] So we have: \[ 3^{-2x + 2} = 5^{-2x + 2} \] ### Step 5: Set the bases equal Since the bases are different, we can set the exponents equal to each other: \[ -2x + 2 = 0 \] ### Step 6: Solve for \(x\) Now, solve for \(x\): \[ -2x = -2 \] \[ x = 1 \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • IMO MODEL TEST PAPER - 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics|10 Videos
  • IMO MODEL TEST PAPER - 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO MODEL TEST PAPER 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section |5 Videos

Similar Questions

Explore conceptually related problems

Given that (5x - 3)^3 + (2x + 5)^3 + 27(4- 3x)^3 = 9(3 - 5x)(2x + 5)(3x - 4) , then the value of (2x + 1) is:

5 3/x xx 3 1/2=19 then x=

If 2x+5/3=1/4x+4 , then x=?

Find the value of x in each of the following . (i) root5(5x + 2) = 2 (ii) root3(3x - 2) =4 (iii) ((3)/(4))^(3)((4)/(3))^(-7)= ((3)/(4))^(2x) (iv) 5^(x-3) xx 3^(2x -8) = 225 (v) (3^(3x) . 3^(2x))/(3^(x)) = root4(3^(20))

Which of the following statements is correct? Statement I , If (5/4)^(5) xx (5/4)^(11) = (5/4)^(8x) , then x = 2. Statement II : If (2/5)^(3) xx (2/5)^(7) = (2/5)^(x-1) . Then x = 11.

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))