Home
Class 8
MATHS
Find the value of ( sqrt((625)/(4356))+ ...

Find the value of `( sqrt((625)/(4356))+ sqrt((576)/(1089))) xx ((66)/(sqrt(19600)+ sqrt(36)))`

A

`(7)/(15)`

B

`(9)/(53)`

C

`(1)/(2)`

D

`(79)/(33)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \left( \sqrt{\frac{625}{4356}} + \sqrt{\frac{576}{1089}} \right) \times \left( \frac{66}{\sqrt{19600} + \sqrt{36}} \right) \), we will break it down step by step. ### Step 1: Simplify \( \sqrt{\frac{625}{4356}} \) 1. Calculate \( \sqrt{625} \) and \( \sqrt{4356} \): - \( \sqrt{625} = 25 \) - \( \sqrt{4356} = 66 \) (since \( 66^2 = 4356 \)) 2. Therefore, \( \sqrt{\frac{625}{4356}} = \frac{\sqrt{625}}{\sqrt{4356}} = \frac{25}{66} \). ### Step 2: Simplify \( \sqrt{\frac{576}{1089}} \) 1. Calculate \( \sqrt{576} \) and \( \sqrt{1089} \): - \( \sqrt{576} = 24 \) - \( \sqrt{1089} = 33 \) (since \( 33^2 = 1089 \)) 2. Therefore, \( \sqrt{\frac{576}{1089}} = \frac{\sqrt{576}}{\sqrt{1089}} = \frac{24}{33} \). ### Step 3: Combine the results from Step 1 and Step 2 Now we add the two fractions: \[ \frac{25}{66} + \frac{24}{33} \] To add these fractions, we need a common denominator. The least common multiple of 66 and 33 is 66. 1. Convert \( \frac{24}{33} \) to have a denominator of 66: \[ \frac{24}{33} = \frac{24 \times 2}{33 \times 2} = \frac{48}{66} \] 2. Now add the fractions: \[ \frac{25}{66} + \frac{48}{66} = \frac{25 + 48}{66} = \frac{73}{66} \] ### Step 4: Simplify \( \sqrt{19600} + \sqrt{36} \) 1. Calculate \( \sqrt{19600} \) and \( \sqrt{36} \): - \( \sqrt{19600} = 140 \) - \( \sqrt{36} = 6 \) 2. Therefore, \[ \sqrt{19600} + \sqrt{36} = 140 + 6 = 146 \] ### Step 5: Calculate the final expression Now we substitute back into the expression: \[ \left( \frac{73}{66} \right) \times \left( \frac{66}{146} \right) \] 1. The \( 66 \) in the numerator and denominator cancels out: \[ \frac{73}{146} \] 2. Simplifying \( \frac{73}{146} \): - \( 146 = 2 \times 73 \), so: \[ \frac{73}{146} = \frac{73}{2 \times 73} = \frac{1}{2} \] ### Final Answer Thus, the value of the expression is \( \frac{1}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2019-20 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics |10 Videos
  • IMO QUESTION PAPER 2019-20 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER 2018-19 SET- A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER 2019-20 SET-B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of sqrt(18)xx sqrt(3)

sqrt(-25)sqrt(36)

Find the value of sqrt(1/4 ) times sqrt(3/4)

Find the value of sqrt(-16) xx sqrt(-25) .

Find the value of 3sqrt(288)xx3sqrt(432)xx3sqrt(648)

The value of (10sqrt(625))/(sqrt(625)-5) is: