If `N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)` then `sqrtN` equals____
A
1
B
`2sqrt(2)-1`
C
`(sqrt(5))/2`
D
`2/(sqrt(sqrt(5)+1))`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to simplify the expression for \( N \) given by:
\[
N = \frac{\sqrt{\sqrt{5}+2} + \sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}} - \sqrt{3 - 2\sqrt{2}}
\]
### Step 1: Simplify the term \( \sqrt{3 - 2\sqrt{2}} \)
We can rewrite \( 3 - 2\sqrt{2} \) as a square:
\[
3 - 2\sqrt{2} = (\sqrt{2} - 1)^2
\]
Thus, we have:
\[
\sqrt{3 - 2\sqrt{2}} = \sqrt{(\sqrt{2} - 1)^2} = \sqrt{2} - 1
\]
### Step 2: Substitute back into the expression for \( N \)
Now substituting this back into \( N \):
\[
N = \frac{\sqrt{\sqrt{5}+2} + \sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}} - (\sqrt{2} - 1)
\]
This simplifies to:
\[
N = \frac{\sqrt{\sqrt{5}+2} + \sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}} - \sqrt{2} + 1
\]
### Step 3: Simplify the numerator \( \sqrt{\sqrt{5}+2} + \sqrt{\sqrt{5}-2} \)
Let’s denote:
\[
a = \sqrt{\sqrt{5}+2}, \quad b = \sqrt{\sqrt{5}-2}
\]
Now, we can find \( a^2 + b^2 \) and \( ab \):
\[
a^2 = \sqrt{5} + 2, \quad b^2 = \sqrt{5} - 2
\]
Adding these gives:
\[
a^2 + b^2 = (\sqrt{5} + 2) + (\sqrt{5} - 2) = 2\sqrt{5}
\]
Now, for \( ab \):
\[
ab = \sqrt{(\sqrt{5}+2)(\sqrt{5}-2)} = \sqrt{5 - 4} = 1
\]
### Step 4: Calculate \( a + b \)
Using the identity \( (a+b)^2 = a^2 + b^2 + 2ab \):
\[
(a+b)^2 = 2\sqrt{5} + 2 = 2(\sqrt{5} + 1)
\]
Thus, we have:
\[
a + b = \sqrt{2(\sqrt{5}+1)}
\]
### Step 5: Substitute \( a + b \) back into \( N \)
Now substituting \( a + b \) back into \( N \):
\[
N = \frac{\sqrt{2(\sqrt{5}+1)}}{\sqrt{\sqrt{5}+1}} - \sqrt{2} + 1
\]
This simplifies to:
\[
N = \sqrt{2} - \sqrt{2} + 1 = 1
\]
### Step 6: Find \( \sqrt{N} \)
Finally, we find:
\[
\sqrt{N} = \sqrt{1} = 1
\]
Thus, the value of \( \sqrt{N} \) is:
\[
\boxed{1}
\]
Topper's Solved these Questions
NUMBER SYSTEMS
SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos
LOGICAL REASONING
SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |9 Videos
POLYNOMIALS
SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos
Similar Questions
Explore conceptually related problems
If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) , then N+2 equals
(sqrt(5)-2)(sqrt(3)-sqrt(5))
[ If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) then N equals [ (A) 1, (B) 2sqrt(2)-1 (C) (sqrt(5))/(2), (D) (2)/(sqrt(sqrt(5)+1))]]
N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N
N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N