Home
Class 9
MATHS
If (3+2sqrt(5))/(3-2sqrt(5))=(p+qsqrt(5)...

If `(3+2sqrt(5))/(3-2sqrt(5))=(p+qsqrt(5))`, then find the value of `11(p+q)`.

A

`31`

B

`-41`

C

`-31`

D

`-40`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3 + 2\sqrt{5}}{3 - 2\sqrt{5}} = p + q\sqrt{5}\), we will follow these steps: ### Step 1: Rationalize the denominator To eliminate the square root in the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is \(3 + 2\sqrt{5}\): \[ \frac{(3 + 2\sqrt{5})(3 + 2\sqrt{5})}{(3 - 2\sqrt{5})(3 + 2\sqrt{5})} \] ### Step 2: Calculate the denominator Using the difference of squares formula \(a^2 - b^2\): \[ (3 - 2\sqrt{5})(3 + 2\sqrt{5}) = 3^2 - (2\sqrt{5})^2 = 9 - 4 \cdot 5 = 9 - 20 = -11 \] ### Step 3: Calculate the numerator Now we calculate the numerator: \[ (3 + 2\sqrt{5})(3 + 2\sqrt{5}) = 3^2 + 2 \cdot 3 \cdot 2\sqrt{5} + (2\sqrt{5})^2 = 9 + 12\sqrt{5} + 4 \cdot 5 = 9 + 12\sqrt{5} + 20 = 29 + 12\sqrt{5} \] ### Step 4: Combine the results Now we can combine the results from the numerator and denominator: \[ \frac{29 + 12\sqrt{5}}{-11} = -\frac{29}{11} - \frac{12}{11}\sqrt{5} \] ### Step 5: Identify \(p\) and \(q\) From the expression \(-\frac{29}{11} - \frac{12}{11}\sqrt{5}\), we can identify: - \(p = -\frac{29}{11}\) - \(q = -\frac{12}{11}\) ### Step 6: Calculate \(11(p + q)\) Now we need to find \(11(p + q)\): \[ p + q = -\frac{29}{11} - \frac{12}{11} = -\frac{29 + 12}{11} = -\frac{41}{11} \] Now, multiplying by 11: \[ 11(p + q) = 11 \cdot \left(-\frac{41}{11}\right) = -41 \] ### Final Answer Thus, the value of \(11(p + q)\) is \(-41\). ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |9 Videos
  • POLYNOMIALS

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos

Similar Questions

Explore conceptually related problems

If (3-sqrt5)/(3-2sqrt5)=msqrt5-a/11 then find m

If p = (3-sqrt(5))/(3+sqrt(5)) and q = (3+sqrt5)/(3-sqrt(5)) ,find the value of p^(2) + q^(2) .

If (3sqrt(5)-6sqrt(7))-(2sqrt(5)-11sqrt(7))=asqrt(5)+bsqrt(7), then find the values of a and b.

If a=(3-sqrt(5))/(3+sqrt(5)) and b=(3+sqrt(5))/(3-sqrt(5)) ,find the value of a^(2)+b^(2)

If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) then find the value of qx^(2)-2px+q

If x(sqrt(25)^(x+(1)/(4))*sqrt(5.5)^(-1))/(5sqrt(5)^(-x))=p, then find the value of p.

If (3+2sqrt(5))/(4-2sqrt(5))=p+qsqrt(5) where p and q are rational numbers, then values of p and q respectively are

If P+sqrt(3)Q+sqrt(5)R+sqrt(15)S=(1)/(1+sqrt(3)+sqrt(5)) then the value of P is