Home
Class 9
MATHS
If x=(a-b)/(a+b),y=(b-c)/(b+c),z=(c-a)/(...

If `x=(a-b)/(a+b),y=(b-c)/(b+c),z=(c-a)/(c+a)` ,then the value of `((1+x)(1+y)(1+z))/((1-x)(1-y)(1-z))` is

A

`abc`

B

`a^(2)b^(2)c^(2)`

C

`1`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{(1+x)(1+y)(1+z)}{(1-x)(1-y)(1-z)}\) where \(x=\frac{a-b}{a+b}\), \(y=\frac{b-c}{b+c}\), and \(z=\frac{c-a}{c+a}\), we will follow these steps: ### Step 1: Substitute the values of \(x\), \(y\), and \(z\) We start by substituting the values of \(x\), \(y\), and \(z\) into the expression. \[ 1+x = 1 + \frac{a-b}{a+b} = \frac{(a+b) + (a-b)}{a+b} = \frac{2a}{a+b} \] \[ 1+y = 1 + \frac{b-c}{b+c} = \frac{(b+c) + (b-c)}{b+c} = \frac{2b}{b+c} \] \[ 1+z = 1 + \frac{c-a}{c+a} = \frac{(c+a) + (c-a)}{c+a} = \frac{2c}{c+a} \] ### Step 2: Calculate the numerator Now we can calculate the product of the numerators: \[ (1+x)(1+y)(1+z) = \left(\frac{2a}{a+b}\right) \left(\frac{2b}{b+c}\right) \left(\frac{2c}{c+a}\right) = \frac{8abc}{(a+b)(b+c)(c+a)} \] ### Step 3: Calculate \(1-x\), \(1-y\), and \(1-z\) Next, we calculate \(1-x\), \(1-y\), and \(1-z\): \[ 1-x = 1 - \frac{a-b}{a+b} = \frac{(a+b) - (a-b)}{a+b} = \frac{2b}{a+b} \] \[ 1-y = 1 - \frac{b-c}{b+c} = \frac{(b+c) - (b-c)}{b+c} = \frac{2c}{b+c} \] \[ 1-z = 1 - \frac{c-a}{c+a} = \frac{(c+a) - (c-a)}{c+a} = \frac{2a}{c+a} \] ### Step 4: Calculate the denominator Now we can calculate the product of the denominators: \[ (1-x)(1-y)(1-z) = \left(\frac{2b}{a+b}\right) \left(\frac{2c}{b+c}\right) \left(\frac{2a}{c+a}\right) = \frac{8abc}{(a+b)(b+c)(c+a)} \] ### Step 5: Form the final expression Now we can substitute the values of the numerator and denominator into the expression: \[ \frac{(1+x)(1+y)(1+z)}{(1-x)(1-y)(1-z)} = \frac{\frac{8abc}{(a+b)(b+c)(c+a)}}{\frac{8abc}{(a+b)(b+c)(c+a)}} = 1 \] ### Final Answer Thus, the value of \(\frac{(1+x)(1+y)(1+z)}{(1-x)(1-y)(1-z)}\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|1 Videos
  • POLYNOMIALS

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos
  • NUMBER SYSTEMS

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos
  • PROBABILITY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS) |3 Videos

Similar Questions

Explore conceptually related problems

If x=(a-b)/(a+b), y=(b-c)/(b+c) and z=(c-a)/(c+a) , find the value of ((1+x)(1+y)(1+z))/((1-x)(1-y)(1-z))

If x=(a+b)/(a-b),y=(b+c)/(b-c),z=(c+a)/(c-a) then the value of ((2x+2)(4y+4)(z+1))/((x-1)(y-1)(z-1)) is equal to

If x = (a-b)/(a+b) , y = (b-c)/(b+c), z = (c-a)/(c+a) , " then " ((1-x)(1-y)(1-z))/((1+x)(1+y)(1+z)) is equal to

If x =a/(b-c), y=b/(c-a), z = c/(a-b) , then what is the value of the following ? |{:(1,-x,x),(1,1,-y),(1,z,1):}|. |{:(1,1,-1),(1,1,-1),(1,3,1):}|

If a^(x)=b, b^(y)=c, c^(z)=a , then what is the value of (1)/((xy+yz+zx))((1)/(x)+(1)/(y)+(1)/(z)) ?

if the system of equation ax+y+z=0,x+by=z=0, and x+y+cz=0(a,b,c!=1) has a nontrival solution,then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c)is:

If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1 , then value of (a)/(a+x) +(b)/(b+y) +(c )/(c+z) is