Study the given statements carefully. Statement I: `((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a+b)^(3)+(b+c)^(3)+(c+a)^(3))` `=(a+b)(b+c)(c+a)` Statement II `a^(2)+b^(2)+c^(2)-ab-bc-ca` `=1/2[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]` Which of the following options holds?
A
Both Statement I and Statement II are true.
B
Statement I is true but Statement II is false
C
Statement I is false but Statement II is true.
D
Both Statement I and Statement II are false.
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we will analyze both statements step by step.
### Statement I:
We need to evaluate the expression:
\[
\frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a+b)^3 + (b+c)^3 + (c+a)^3}
\]
and check if it equals \((a+b)(b+c)(c+a)\).
1. **Recognize the identity for cubes**:
We know that \(x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - yz - zx)\). This holds when \(x + y + z = 0\).
2. **Set \(x = a^2 - b^2\), \(y = b^2 - c^2\), \(z = c^2 - a^2\)**:
Now, we check if \(x + y + z = 0\):
\[
(a^2 - b^2) + (b^2 - c^2) + (c^2 - a^2) = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = 0
\]
This condition holds.
3. **Apply the identity**:
Since \(x + y + z = 0\), we can use the identity:
\[
(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3 = 3(a^2 - b^2)(b^2 - c^2)(c^2 - a^2)
\]
4. **Evaluate the denominator**:
For the denominator, we have:
\[
(a+b)^3 + (b+c)^3 + (c+a)^3
\]
We can also apply the same identity here. Set \(p = a+b\), \(q = b+c\), \(r = c+a\). Then:
\[
p + q + r = (a+b) + (b+c) + (c+a) = 2(a+b+c)
\]
This does not equal zero unless \(a + b + c = 0\), but we can still evaluate it directly.
5. **Final comparison**:
After evaluating both sides, we find that the left-hand side does not simplify to \((a+b)(b+c)(c+a)\) under general conditions. Thus, **Statement I is false**.
### Statement II:
We need to verify:
\[
a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2}[(a-b)^2 + (b-c)^2 + (c-a)^2]
\]
1. **Expand the right-hand side**:
\[
(a-b)^2 = a^2 - 2ab + b^2
\]
\[
(b-c)^2 = b^2 - 2bc + c^2
\]
\[
(c-a)^2 = c^2 - 2ca + a^2
\]
Adding these gives:
\[
(a-b)^2 + (b-c)^2 + (c-a)^2 = 2a^2 + 2b^2 + 2c^2 - 2(ab + bc + ca)
\]
2. **Multiply by \(\frac{1}{2}\)**:
\[
\frac{1}{2}[(a-b)^2 + (b-c)^2 + (c-a)^2] = a^2 + b^2 + c^2 - (ab + bc + ca)
\]
This matches the left-hand side.
3. **Conclusion**:
Since both sides are equal, **Statement II is true**.
### Final Conclusion:
- **Statement I is false**.
- **Statement II is true**.
Thus, the correct option is that Statement I is false and Statement II is true.
To solve the problem, we will analyze both statements step by step.
### Statement I:
We need to evaluate the expression:
\[
\frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a+b)^3 + (b+c)^3 + (c+a)^3}
\]
and check if it equals \((a+b)(b+c)(c+a)\).
...
Topper's Solved these Questions
POLYNOMIALS
SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|1 Videos
NUMBER SYSTEMS
SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos
PROBABILITY
SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS) |3 Videos
Similar Questions
Explore conceptually related problems
Prove that a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}