Home
Class 9
MATHS
Study the given statements carefully. S...

Study the given statements carefully.
Statement I:
`((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a+b)^(3)+(b+c)^(3)+(c+a)^(3))`
`=(a+b)(b+c)(c+a)`
Statement II `a^(2)+b^(2)+c^(2)-ab-bc-ca`
`=1/2[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]`
Which of the following options holds?

A

Both Statement I and Statement II are true.

B

Statement I is true but Statement II is false

C

Statement I is false but Statement II is true.

D

Both Statement I and Statement II are false.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze both statements step by step. ### Statement I: We need to evaluate the expression: \[ \frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a+b)^3 + (b+c)^3 + (c+a)^3} \] and check if it equals \((a+b)(b+c)(c+a)\). 1. **Recognize the identity for cubes**: We know that \(x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - yz - zx)\). This holds when \(x + y + z = 0\). 2. **Set \(x = a^2 - b^2\), \(y = b^2 - c^2\), \(z = c^2 - a^2\)**: Now, we check if \(x + y + z = 0\): \[ (a^2 - b^2) + (b^2 - c^2) + (c^2 - a^2) = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = 0 \] This condition holds. 3. **Apply the identity**: Since \(x + y + z = 0\), we can use the identity: \[ (a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3 = 3(a^2 - b^2)(b^2 - c^2)(c^2 - a^2) \] 4. **Evaluate the denominator**: For the denominator, we have: \[ (a+b)^3 + (b+c)^3 + (c+a)^3 \] We can also apply the same identity here. Set \(p = a+b\), \(q = b+c\), \(r = c+a\). Then: \[ p + q + r = (a+b) + (b+c) + (c+a) = 2(a+b+c) \] This does not equal zero unless \(a + b + c = 0\), but we can still evaluate it directly. 5. **Final comparison**: After evaluating both sides, we find that the left-hand side does not simplify to \((a+b)(b+c)(c+a)\) under general conditions. Thus, **Statement I is false**. ### Statement II: We need to verify: \[ a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2}[(a-b)^2 + (b-c)^2 + (c-a)^2] \] 1. **Expand the right-hand side**: \[ (a-b)^2 = a^2 - 2ab + b^2 \] \[ (b-c)^2 = b^2 - 2bc + c^2 \] \[ (c-a)^2 = c^2 - 2ca + a^2 \] Adding these gives: \[ (a-b)^2 + (b-c)^2 + (c-a)^2 = 2a^2 + 2b^2 + 2c^2 - 2(ab + bc + ca) \] 2. **Multiply by \(\frac{1}{2}\)**: \[ \frac{1}{2}[(a-b)^2 + (b-c)^2 + (c-a)^2] = a^2 + b^2 + c^2 - (ab + bc + ca) \] This matches the left-hand side. 3. **Conclusion**: Since both sides are equal, **Statement II is true**. ### Final Conclusion: - **Statement I is false**. - **Statement II is true**. Thus, the correct option is that Statement I is false and Statement II is true.

To solve the problem, we will analyze both statements step by step. ### Statement I: We need to evaluate the expression: \[ \frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a+b)^3 + (b+c)^3 + (c+a)^3} \] and check if it equals \((a+b)(b+c)(c+a)\). ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|1 Videos
  • NUMBER SYSTEMS

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos
  • PROBABILITY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS) |3 Videos

Similar Questions

Explore conceptually related problems

Prove that a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove that: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + (c+a)/(b) =?

(a-b)^(3)+(b-c)^(3)+(c-a)^(3)=?(a)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)(b)3(a-b)(b-c)(c-a)(c)(a-b)(b-c)(c-a)(d)none of these

|(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

Show that |abca^(2)b^(2)c^(2)baab|=|111a^(2)b^(2)c^(2)a^(2)b^(2)c^(3)|=(a-b)(b-c)(c-a)(ab+bc+ca)

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+ (c )/(a+b) = ?

Verify that (a +b + c) (a ^(2) + b ^(2) + c ^(2) - ab - bc - ca) = a ^(3) + b ^(3) + c ^(3)- 3 abc