Find the area of quadrilateral ABCD in which AB = 9 cm, BC = 40 cm, CD = 28 cm, DA = 15 cm and `angleABC = 90^(@)`.
A
`300cm^(2)`
B
`180cm^(2)`
C
`126cm^(2)`
D
`306cm^(2)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the area of quadrilateral ABCD, we can break it down into two triangles: triangle ABC and triangle ACD. Given that angle ABC is 90 degrees, we can easily calculate the area of triangle ABC using the formula for the area of a right triangle.
### Step-by-Step Solution:
1. **Identify the dimensions of triangle ABC:**
- AB = 9 cm (base)
- BC = 40 cm (height)
2. **Calculate the area of triangle ABC:**
\[
\text{Area}_{ABC} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 9 \times 40
\]
\[
\text{Area}_{ABC} = \frac{1}{2} \times 360 = 180 \text{ cm}^2
\]
3. **Use the Pythagorean theorem to find AC:**
- AC is the hypotenuse of triangle ABC.
\[
AC = \sqrt{AB^2 + BC^2} = \sqrt{9^2 + 40^2} = \sqrt{81 + 1600} = \sqrt{1681} = 41 \text{ cm}
\]
4. **Identify the dimensions of triangle ACD:**
- AD = 15 cm
- CD = 28 cm
- AC = 41 cm
5. **Calculate the semi-perimeter (s) of triangle ACD:**
\[
s = \frac{AD + CD + AC}{2} = \frac{15 + 28 + 41}{2} = \frac{84}{2} = 42 \text{ cm}
\]
6. **Use Heron's formula to find the area of triangle ACD:**
\[
\text{Area}_{ACD} = \sqrt{s(s - AD)(s - CD)(s - AC)}
\]
\[
= \sqrt{42(42 - 15)(42 - 28)(42 - 41)}
\]
\[
= \sqrt{42 \times 27 \times 14 \times 1}
\]
\[
= \sqrt{42 \times 27 \times 14}
\]
To simplify:
\[
42 = 14 \times 3 \quad \text{and} \quad 27 = 9 \times 3
\]
\[
= \sqrt{(14 \times 14) \times (3 \times 3) \times 1} = \sqrt{196 \times 9} = 14 \times 3 = 42 \text{ cm}^2
\]
7. **Calculate the total area of quadrilateral ABCD:**
\[
\text{Area}_{ABCD} = \text{Area}_{ABC} + \text{Area}_{ACD} = 180 + 42 = 222 \text{ cm}^2
\]
### Final Result:
The area of quadrilateral ABCD is **222 cm²**.
Topper's Solved these Questions
HERON'S FORMULA
SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics|3 Videos
COORDINATE GEOMETRY
SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|2 Videos
IMO QUESTION PAPER 2016 SET A
SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
Similar Questions
Explore conceptually related problems
A park is in the shape of quadrilateral ABCD in which AB = 9 cm, BC = 12 cm, CD = 5 cm, AD = 8 cm and angle C = 90^(@) . Find the area of the park.
Find the area of the quadrilateral ABCD, in which AB=7cm,BC=6cm,CD=12cm,DA=15cm and AC=9cm
Find the area of the quadrilateral ABCD, in which AB=7cm,BC=6cm,CD=12cm,DA=15cm and AC=9cm
Find the area of a quadrilateral ABCD in which AB=3cm,BC=4cm,CD=4cm,DA=5cm and AC=5cm
The base of a right prism is a quadrilateral ABCD. Given that AB = 9 cm, BC = 14 cm, CD = 13 cm, DA = 12 cm and angleDAB = 90^(@) . If the volume of the prism be 2070 cm^(3) , then the area of the lateral surface is
Find the area of a quadrilateral ABCD is which AB=3cm,BC=4cm,CD=4cm,DA=5cm and AC=5cm
Find the area of the quadrilateral ABCD in which AB = 9 m, BC = 40 m, angle ABC = 90^(@) , CD = 15 m and AD = 28 m.
Find the area of the quadrilateral ABCD in which AB=3cm,BC=4cm,CD=4cm,DA=5cm and AC=5cm.
Find the area of the quadrilateral ABCD; in which AB=7cm;BC=6cm;CD=12cm;DA=15cm and AC=9cm
Find the area of the quadrilateral ABCD in which AB= 42 cm. Bc=21 cm ,CD=29 cm ,DA = 34 cm and diagonal BD= 20 cm .
SCIENCE OLYMPIAD FOUNDATION -HERON'S FORMULA-Achievers Section (HOTS)