Home
Class 9
MATHS
The factors 8(a-2b)^(2)-2a+4b-1= are...

The factors `8(a-2b)^(2)-2a+4b-1=` are

A

`(2a-4b-1)(4a-8b+1)`

B

`(2a+4b+1)(4a-8b+1)`

C

`(2a-4b-1)(4a-8b-1)`

D

`(2a+4b-1)(4a+8b+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( 8(a - 2b)^2 - 2a + 4b - 1 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 8(a - 2b)^2 - 2a + 4b - 1 \] ### Step 2: Substitute a variable Let \( x = a - 2b \). Then, we can rewrite the expression as: \[ 8x^2 - 2a + 4b - 1 \] ### Step 3: Express \( a \) and \( b \) in terms of \( x \) From our substitution, we know: \[ a = x + 2b \] Substituting this into the expression gives: \[ 8x^2 - 2(x + 2b) + 4b - 1 \] This simplifies to: \[ 8x^2 - 2x - 4b + 4b - 1 = 8x^2 - 2x - 1 \] ### Step 4: Factor the quadratic expression Now we need to factor \( 8x^2 - 2x - 1 \). To do this, we look for two numbers that multiply to \( 8 \times -1 = -8 \) and add to \( -2 \). The numbers that work are \( -4 \) and \( 2 \). ### Step 5: Rewrite the middle term We can rewrite the expression as: \[ 8x^2 - 4x + 2x - 1 \] ### Step 6: Group the terms Now we group the terms: \[ (8x^2 - 4x) + (2x - 1) \] ### Step 7: Factor by grouping Factoring out common terms from each group gives us: \[ 4x(2x - 1) + 1(2x - 1) \] Now we can factor out \( (2x - 1) \): \[ (2x - 1)(4x + 1) \] ### Step 8: Substitute back for \( x \) Now we substitute back \( x = a - 2b \): \[ (2(a - 2b) - 1)(4(a - 2b) + 1) \] This simplifies to: \[ (2a - 4b - 1)(4a - 8b + 1) \] ### Final Answer Thus, the factors of the expression \( 8(a - 2b)^2 - 2a + 4b - 1 \) are: \[ (2a - 4b - 1)(4a - 8b + 1) \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2016 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday mathematics|10 Videos
  • IMO QUESTION PAPER 2016 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers section|5 Videos
  • IMO QUESTION PAPER 2016 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER 2017 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

The factors of 8a^(3)+b^(3)-6ab+1 are (a) (2a+b-1)(4a^(2)+b^(2)+1-3ab-2a) (b) (2a-b+1)(4a^(2)+b^(2)-4ab+1-2a+b)(2a+b+1)(4a^(2)+b^(2)+1-2ab-b-2a) (d) (2a-1+b)(4a^(2)+1-4a-b-2ab)

The factors of (a^2+4b^2+4b-4ab-2a-8) are

The factors of a ^(2) - 2 ab + b ^(2) are (a+b) and (a +b). True or false.

The factors of 1- (a ^(2) + b ^(2)) + a ^(2) b ^(2) are :