Home
Class 9
MATHS
Find the value of root(3)(54872)-root(3)...

Find the value of `root(3)(54872)-root(3)(1728) + root(3)(15625)`

A

51

B

49

C

72

D

58

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{54872} - \sqrt[3]{1728} + \sqrt[3]{15625} \), we will break it down step by step. ### Step 1: Calculate \( \sqrt[3]{54872} \) To find \( \sqrt[3]{54872} \), we can factor it. - We notice that \( 54872 = 8 \times 6859 \). - We know that \( 8 = 2^3 \) and \( 6859 = 19^3 \). Thus, we can write: \[ \sqrt[3]{54872} = \sqrt[3]{8 \times 6859} = \sqrt[3]{8} \times \sqrt[3]{6859} = 2 \times 19 = 38. \] ### Step 2: Calculate \( \sqrt[3]{1728} \) Next, we calculate \( \sqrt[3]{1728} \). - We know that \( 1728 = 12^3 \). Thus, we have: \[ \sqrt[3]{1728} = 12. \] ### Step 3: Calculate \( \sqrt[3]{15625} \) Now, we calculate \( \sqrt[3]{15625} \). - We know that \( 15625 = 25^3 \). Thus, we have: \[ \sqrt[3]{15625} = 25. \] ### Step 4: Substitute the values back into the expression Now we substitute the values we found back into the original expression: \[ \sqrt[3]{54872} - \sqrt[3]{1728} + \sqrt[3]{15625} = 38 - 12 + 25. \] ### Step 5: Perform the arithmetic Now we perform the arithmetic: \[ 38 - 12 = 26, \] and then, \[ 26 + 25 = 51. \] ### Final Answer Thus, the value of the expression \( \sqrt[3]{54872} - \sqrt[3]{1728} + \sqrt[3]{15625} \) is \( \boxed{51} \). ---
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2020 SET 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics |10 Videos
  • IMO QUESTION PAPER 2020 SET 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section |5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of root(3)(2744)+7 .

Find the value of root3(512) xx root3(3.375)

Find the value of (root(3)(125)times root(3)(64))/(root(3)(125)-root(3)(64))

Find the value of x in root(3)(15625)- sqrtx =4 root(3)(15625)- sqrtx =4 में x का मान ज्ञात कीजिए।

Find the value of root3([0.12^(3)])