Home
Class 9
MATHS
Find the value of reciprocal of (a + b)^...

Find the value of reciprocal of `(a + b)^(-1) (a^(-1) + b^(-1))`

A

ab

B

a/b

C

1/ab

D

`(ab)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((a + b)^{-1} (a^{-1} + b^{-1})\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (a + b)^{-1} (a^{-1} + b^{-1}) \] We can rewrite \(a^{-1} + b^{-1}\) using a common denominator: \[ a^{-1} + b^{-1} = \frac{b + a}{ab} = \frac{a + b}{ab} \] ### Step 2: Substitute back into the expression Now, substitute this back into the original expression: \[ (a + b)^{-1} \left(\frac{a + b}{ab}\right) \] ### Step 3: Simplify the expression Now we can simplify this: \[ = (a + b)^{-1} \cdot \frac{a + b}{ab} \] The \((a + b)\) terms cancel out: \[ = \frac{1}{ab} \] ### Step 4: Find the reciprocal The reciprocal of \(\frac{1}{ab}\) is simply: \[ ab \] ### Final Answer Thus, the value of the reciprocal of \((a + b)^{-1} (a^{-1} + b^{-1})\) is: \[ \boxed{ab} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics |10 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER 2020 SET 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER SET A 2017

    SCIENCE OLYMPIAD FOUNDATION |Exercise ARCHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

Find the reciprocal of (1/2)^5

Find the reciprocal of 2 1/3

If a=2, b= 3 find the values of (a^(b) + b^(a))^(-1) (ii) (a^(a) + b^(b))^(-1)

Find the value of (-iota)^-117 is ( A ) -1 ( B ) iota ( C ) 1

The sum of two non-zero numbers is 8 ,the minimum value of the sum of their reciprocals is (1)/(4) (b) (1)/(2) (c) (1)/(8) (d) none of these

If a=2 and b=3, then find the values of each of the following: ((a)/(b))^(a) (b) ((1)/(a)+(1)/(b))^(a)

If a=1,b=2 then find the value of (a^(b) + b^(a))^(-1)

What is the reciprocal of 1/(a-3b) when b=a/3

If a=2 and b=3, then find the values of each of the following: a^(a)+b^(b)( ii) a^(b)+b^(a) (iii) a^(b)((a)/(b))^(a)(v)((1)/(a)+(1)/(b))^(a)