Home
Class 9
MATHS
Factorise : (x+ y + z)^2 - (x-y - z)^...

Factorise :
`(x+ y + z)^2 - (x-y - z)^2 + 4y^2 - 4z^2`

A

`(x+ 2z) (4x + y -z)`

B

`(x+z) (x+y-2z)`

C

`4(y+z) (x+y - z)`

D

`2(x+z) (y-2z)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((x + y + z)^2 - (x - y - z)^2 + 4y^2 - 4z^2\), we can follow these steps: ### Step 1: Identify the structure We recognize that the expression has the form of a difference of squares, which is given by the formula \(a^2 - b^2 = (a + b)(a - b)\). ### Step 2: Apply the difference of squares Let: - \(a = (x + y + z)\) - \(b = (x - y - z)\) Now, we can rewrite the first part of the expression: \[ (x + y + z)^2 - (x - y - z)^2 = (a + b)(a - b) \] ### Step 3: Calculate \(a + b\) and \(a - b\) Calculating \(a + b\): \[ a + b = (x + y + z) + (x - y - z) = 2x + 0 + 0 = 2x \] Calculating \(a - b\): \[ a - b = (x + y + z) - (x - y - z) = 0 + 2y + 2z = 2y + 2z \] ### Step 4: Substitute back into the expression Now substituting back, we have: \[ (x + y + z)^2 - (x - y - z)^2 = (2x)(2y + 2z) = 4x(y + z) \] ### Step 5: Factor the remaining part Now, we need to factor the remaining part \(4y^2 - 4z^2\): This can also be factored using the difference of squares: \[ 4y^2 - 4z^2 = 4(y^2 - z^2) = 4(y - z)(y + z) \] ### Step 6: Combine the factors Now we combine both parts: \[ 4x(y + z) + 4(y - z)(y + z) \] ### Step 7: Factor out the common term Notice that \( (y + z) \) is a common factor: \[ = 4(y + z)(x + (y - z)) \] ### Final Answer Thus, the factorised form of the expression is: \[ \boxed{4(y + z)(x + y - z)} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics |10 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER 2020 SET 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER SET A 2017

    SCIENCE OLYMPIAD FOUNDATION |Exercise ARCHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

Factorise : (x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)

Factorise x^(2)-(y-z)^(2) .

(a) Factorise : x^(2) - (z-5)x - 5z (b) Factorise : x^(2) + x - y + y^(2) - 2xy

8x + y + 2z = 4x + 2y + z = 1x + y + z = 2

2x = 3y = 4z, x: y: z

If (x+ y-z -1)^(2) + (z+ x-y - 2)^(2) + (z+y-x-4)^(2)=0 find x+ y+z =?

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi show that, x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ ( 2) y ^ (2) z ^ (2) = 2 (x ^ (2) y ^ (2) + y ^ (2) z ^ (2) + z ^ (2) x ^ (2))